About limit matrices of finite-state Markov chains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exit Frequency Matrices for Finite Markov Chains

Consider a finite irreducible Markov chain on state space S with transition matrix M and stationary distribution π. Let R be the diagonal matrix of return times, Rii = 1/πi. Given distributions σ, τ and k ∈ S, the exit frequency xk(σ, τ) denotes the expected number of times a random walk exits state k before an optimal stopping rule from σ to τ halts the walk. For a target distribution τ , we d...

متن کامل

Finite-State Markov Chains for Multiple Sequences

We consider the analysis of sets of categorical sequences consisting of piecewise homogeneous Markov segments. The sequences are assumed to be governed by a common underlying process with segments occurring in the same order for each sequence. Segments are defined by a set of unobserved changepoints where the positions and number of changepoints can vary from sequence to sequence. We propose a ...

متن کامل

Series Expansions for Finite-state Markov Chains

This paper provides series expansions of the stationary distribution of a finite Markov chain. This leads to an efficient numerical algorithm for computing the stationary distribution of a finite Markov chain. Numerical examples are given to illustrate the performance of the algorithm.

متن کامل

Finite-state Markov Chains Obey Benford's Law

A sequence ofreal numbers (xn) is Benford if the significands, i.e., the fraction parts in the floating-point representation of (x ), are distributed logarithmically. Similarly, a discrete-time irreducible and aperiodic fi­ n nite-state Markov chain with transition probability matrix P and limiting matrix P' is Benford if every com­ ponent of both sequences of matrices (pn P') and (pn+1 pn) is ...

متن کامل

cient State Classi cation of Finite State Markov Chains

This paper presents an e cient method for state classi cation of nite state Markov chains using BDD-based symbolic techniques. The method exploits the fundamental properties of a Markov chain and classi es the state space by iteratively applying reachability analysis. We compare our method with the current state-of-the-art technique which requires the computation of the transitive closure of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1997

ISSN: 0024-3795

DOI: 10.1016/0024-3795(95)00524-2